82 research outputs found

    HumanMimic: Learning Natural Locomotion and Transitions for Humanoid Robot via Wasserstein Adversarial Imitation

    Full text link
    Transferring human motion skills to humanoid robots remains a significant challenge. In this study, we introduce a Wasserstein adversarial imitation learning system, allowing humanoid robots to replicate natural whole-body locomotion patterns and execute seamless transitions by mimicking human motions. First, we present a unified primitive-skeleton motion retargeting to mitigate morphological differences between arbitrary human demonstrators and humanoid robots. An adversarial critic component is integrated with Reinforcement Learning (RL) to guide the control policy to produce behaviors aligned with the data distribution of mixed reference motions. Additionally, we employ a specific Integral Probabilistic Metric (IPM), namely the Wasserstein-1 distance with a novel soft boundary constraint to stabilize the training process and prevent model collapse. Our system is evaluated on a full-sized humanoid JAXON in the simulator. The resulting control policy demonstrates a wide range of locomotion patterns, including standing, push-recovery, squat walking, human-like straight-leg walking, and dynamic running. Notably, even in the absence of transition motions in the demonstration dataset, robots showcase an emerging ability to transit naturally between distinct locomotion patterns as desired speed changes

    Advanced cueing of auditory stimulus to the head induces body sway in the direction opposite to the stimulus site during quiet stance in male participants

    Get PDF
    Under certain conditions, a tactile stimulus to the head induces the movement of the head away from the stimulus, and this is thought to be caused by a defense mechanism. In this study, we tested our hypothesis that predicting the stimulus site of the head in a quiet stance activates the defense mechanism, causing a body to sway to keep the head away from the stimulus. Fourteen healthy male participants aged 31.2 ± 6.8 years participated in this study. A visual cue predicting the forthcoming stimulus site (forehead, left side of the head, right side of the head, or back of the head) was given. Four seconds after this cue, an auditory or electrical tactile stimulus was given at the site predicted by the cue. The cue predicting the tactile stimulus site of the head did not induce a body sway. The cue predicting the auditory stimulus to the back of the head induced a forward body sway, and the cue predicting the stimulus to the forehead induced a backward body sway. The cue predicting the auditory stimulus to the left side of the head induced a rightward body sway, and the cue predicting the stimulus to the right side of the head induced a leftward body sway. These findings support our hypothesis that predicting the auditory stimulus site of the head induces a body sway in a quiet stance to keep the head away from the stimulus. The right gastrocnemius muscle contributes to the control of the body sway in the anterior–posterior axis related to this defense mechanism

    Efficacy of soft palatal augmentation prosthesis for oral functional rehabilitation in patients with dysarthria and dysphagia: a protocol for a randomised controlled trial

    Get PDF
    Introduction Palatal augmentation prosthesis (PAP) is used in patients with articulation and swallowing disorders caused by postoperative loss of tongue tissue due to tongue cancer, cerebrovascular disease sequelae and age-related hypofunction. We have previously reported a newly designed soft PAP fabricated using an thermoplastic material that is particularly appropriate for early intervention. However, the effect of soft PAP on oral function improvement remains to be elucidated. The aim of this study is to investigate whether soft PAP can improve dysarthria and dysphagia occurring as cerebrovascular disease sequelae. Methods and analysis This prospective, randomised, controlled trial will compare the immediate and training effects of rehabilitation using soft PAP with those of rehabilitation without using it. Primary outcomes are the single-word intelligibility test score and pharyngeal transit time (PTT). Secondary outcomes are tongue function (evaluated based on maximum tongue pressure, repetitions of tongue pressure and endurance of tongue pressure), articulation function (evaluated based on speech intelligibility, oral diadochokinesis, Voice-Related Quality of Life (V-RQOL)) and swallowing function (evaluated using Eating Assessment Tool-10). The study results will help determine the efficacy of Soft PAP in improving functional outcomes of word intelligibility and PTT. We hypothesised that early rehabilitation using Soft PAP would more effectively improve articulation and swallowing function compared with conventional rehabilitation without using soft PAP. Ethics and dissemination Ethical approval was obtained from the Okayama University Certified Review Board. The study findings will be published in an open access, peer-reviewed journal and presented at relevant conferences and research meetings

    Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs

    Get PDF
    Although c-Jun NH 2 -terminal kinase (JNK) has been implicated in the pathogenesis of transplantation-induced ischemia/reperfusion (I/R) injury in various organs, its significance in lung transplantation has not been conclusively elucidated. We therefore attempted to measure the transitional changes in JNK and AP-1 activities in I/R-injured lungs. Subsequently, we assessed the effects of JNK inhibition by the three agents including SP600125 on the degree of lung injury assessed by means of various biological markers in bronchoalveolar lavage fluid and histological examination including detection of apoptosis. In addition, we evaluated the changes in p38, extracellular signal-regulated kinase, and NF-B-DNA binding activity. I/R injury was established in the isolated rat lung preserved in modified Euro-Collins solution at 4°C for 4 h followed by reperfusion at 37°C for 3 h. We found that AP-1 was transiently activated during ischemia but showed sustained activation during reperfusion, leading to significant lung injury and apoptosis. The change in AP-1 was generally in parallel with that of JNK, which was activated in epithelial cells (bronchial and alveolar), alveolar macrophages, and smooth muscle cells (bronchial and vascular) on immunohistochemical examination. The change in NF-B qualitatively differed from that of AP-1. Protein leakage, release of lactate dehydrogenase and TNF-␣ into bronchoalveolar lavage fluid, and lung injury were improved, and apoptosis was suppressed by JNK inhibition. In conclusion, JNK plays a pivotal role in mediating lung injury caused by I/R. Therefore, inhibition of JNK activity has potential as an effective therapeutic strategy for preventing I/R injury during lung transplantation

    Upgrading of shielding for rare decay search in CANDLES

    Get PDF
    In the CANDLES experiment aiming to search for the very rare neutrino-less double beta decays (0νββ) using 48Ca, we introduced a new shielding system for high energy γ-rays from neutron captures in massive materials near the detector, in addition to the background reduction for 232Th decays in the 0νββ target of CaF2 crystals. The method of background reduction and the performance of newly installed shielding system are described

    Waiting-Time Paradox in 1922

    Get PDF
    We present an English translation and discussion of an essay that a Japanese physicist, Torahiko Terada, wrote in 1922. In the essay, he described the waiting-time paradox, also called the bus paradox, which is a known mathematical phenomenon in queuing theory, stochastic processes, and modern temporal network analysis. He also observed and analyzed data on Tokyo City trams to verify the relevance of the waiting-time paradox to busy passengers in Tokyo at the time. This essay seems to be one of the earliest documentations of the waiting-time paradox in a sufficiently scientific manner

    Kinetically controlled self-assembly of Rh(II)-based squares assisted by monotopic ligand

    No full text
    Self-assembled coordination squares consisting of cis-protected dinuclear Rh(II) corner complexes and linear ditopic ligands were selectively produced in solution under kinetic control with the assistance of a weak monotopic carboxylate ligand (2,6-dichlorobenzoate: dcb–) as a leaving ligand. Preventing the cyclization step in the triangular formation by the leaving ligand enabled to produce the molecular square only. It was also found that dcb– can selectively convert the triangular complex into the square complex at room temperature, though heating at 373 K for 2 days is needed for the conversion without dcb– and that DMSO blocked the transformation process with dcb–. These results indicate that the energy landscape of the Rh(II)-based molecular self-assembly can be modulated properly by monotopic carboxylate ligand and solvent so that the self-assembly proceeds under kinetic control. Furthermore, one of the molecular squares assembled into a dimeric structure by the solvophobic effect, whose structure was characterized by NMR spectroscopy and single-crystal X-ray analysis
    corecore